ОСХН Российская сельскохозяйственная наука Russian Agricultural Sciences

  • ISSN (Print) 2500-2627
  • ISSN (Online) 3034-5820

Минеральное питание растений при внесении ростстимулирующих ризосферных бактерий в загрязненную медью почву

Код статьи
S2500262725010082-1
DOI
10.31857/S2500262725010082
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 1
Страницы
45-48
Аннотация
Исследования проводили с целью изучения влияния внесения ростстимулирующих ризосферных бактерий рода Pseudomonas на минеральное питание растений яровой пшеницы при выращивании на искусственно загрязненной медью в повышенной концентрации агросерой почве. Работу выполняли в вегетационном опыте. Растения выращивали до фазы выхода в трубку при загрязнении азотнокислой медью в дозе 300 мг Cu/кг почвы на фоне внесения PK-удобрений. Содержание Cu и биофильных элементов N, P, K, Ca, Mg, Fe, Mn и Zn в вегетативной массе и корнях после сжигания в смеси HNO3: HClO4 (2:1) определяли методом эмиссионно-оптической спектрометрии индуктивно-связанной плазмы, калия – пламенной фотометрии, азота – феноловым методом после сжигания растительного материала в разбавленной серной кислоте с катализатором. Внесение бактерий обеспечивало увеличение устойчивости растений к повышенной концентрации меди и формирование большего количества растительной биомассы, тем самым уменьшая фитотоксичность тяжелого металла. Положительное действие бактерий было обусловлено улучшением минерального питания растений и увеличением поглощения ими биофильных элементов из загрязненной почвы. При этом бактерии в целом не влияли на содержание практически всех элементов в вегетативной массе растений и увеличивали поглощение элементов растениями вследствие стимуляции их роста, вероятно, обусловленного образованием бактериями физиологически активных соединений. Стимуляция роста загрязненных тяжелым металлом растений и увеличение его поглощения при использовании бактерий происходили без изменений реакции почвенной среды. Улучшение минерального питания растений, наряду с усилением барьерной способности корневой системы к увеличению поглощения тяжелого металла корнями, при использовании всех бактерий служит основным механизмом стимуляции роста загрязненных растений.
Ключевые слова
Pseudomonas яровая пшеница (Triticum aestivum L.) агросерая почва медь азотнокислая химический состав растений
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
16

Библиография

  1. 1. Copper toxicity in plants: Nutritional, physiological and biochemical aspects / F. J. R. Cruz, R. L. da Cruz Ferreira, S. S. Conceicao, et al. // Advances in Plant Mechanisms. Ed. J. N. Kimatu. 2022. 370 p. URL: http://www.doi: 10.5772/105212/intechopen (дата обращения: 17.04.2023). doi: 10.5772/105212/intechopen.
  2. 2. Recent progress on emerging technologies for trace elements-contaminated soil remediation. Review / T. El. Rasafi, A. Haouas, A. Tallou, et al. // Chemosphere. 2023. Vol. 341. 140121. URL: ubmed.ncbi.nlm.nih.gov/37690564 (дата обращения: 17.04.2023). doi: 10.1016/j.chemosphere.2023.140121.
  3. 3. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review / A. Ullah, S. Heng, M. F. H. Munis, et al. // Environmental and Experimental Botany. 2015. Vol. 117. P. 28–40. doi: 10.1016/j.envexpbot.2015.05.001.
  4. 4. Mishra J., Singh R., Arora N. K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Mini review article. Sec. Microbial Symbioses // Frontiers in Microbiology. 2017. Vol. 8. URL: www.pubmed.ncbi.nlm.nih.gov/28932218 (дата обращения: 17.04.2023). doi: 10.3389/fmicb.2017.01706.
  5. 5. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Review article / J. K. Sharma, N. Kumar, N. P. Singh, et al. // Frontiers in Plant Science. 2023. Vol. 14. P. 1–13. URL: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1076876/full (дата обращения: 17.04.2023). doi: 10.3389/fpls.2023.1076876.
  6. 6. Dorjey S., Dolkar D., Sharma R. Plant growth promoting rhizobacteria Pseudomonas // International Journal of Current Microbiology and Applied Sciences. 2017. Vol. 7. P. 1335–1344. doi: 10.20546/ijcmas.2017.607.160.
  7. 7. Recent developments in microbe-plant-based bioremediation for tackling heavy metal-polluted soils: Review Article / L. Saha, J. Tiwari, K. Bauddh, et al. // Frontiers in Microbiology. 2021. 12. 723. URL: www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2021.731723/full (дата обращения: 17.04.2023). doi: 10.3389/fmicb.2021.731723.
  8. 8. Bioaugmentation with copper tolerant endophytePseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus / A. Kumar, Tripti, O. Voropaeva, et al. // Chemosphere. 2021. Vol. 266. 128983. URL: www.sciencedirect.com/science/article/abs/pii/S0045653520331805 (дата обращения: 17.04.2023). doi: 10.1016/j.chemosphere.2020.128983.
  9. 9. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Сu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil / X. M. Ren, S. J. Guo, W. Tian, et al. // Frontiers in Microbiology. 2019. Vol. 10. P. 1–12. URL: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.01455/full (дата обращения: 17.04.2023). doi: 10.3389/fmicb.2019.01455.
  10. 10. Pattnaik S., Mohapatra B., Gupta A. Plant growth-promoting microbe mediated uptake of essential nutrients (Fe, P, K) for crop stress management: microbe–soil–plant continuum. Review article // Frontiers in Agronomy. 2021. Vol. 3. P. 1–20. URL: https://www.frontiersin.org/journals/agronomy/articles/10.3389/fagro.2021.689972/full (дата обращения: 17.04.2023). doi: 10.3389/fagro.2021.689972.
  11. 11. Tak H. I., Ahmad F., Babalola O. O. Advances in the application of plant growth- promoting rhizobacteria in phytoremediation of heavy metals. Review // Reviews of Environmental Contamination and Toxicology. 2013. Vol. 223. P. 33–52. doi: 10.1007/978-1-4614-5577-6-2.
  12. 12. ГН 2.1.7.2042-06. Гигиенические нормативы. Ориентировочно-допустимые концентрации (ОДК) химических веществ в почве. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2006. 11 с.
  13. 13. Шабаев В. П. Микробиологическая азотфиксация и рост растений при внесении ризосферных микроорганизмов и минеральных удобрений // Почвенные процессы и пространственно-временная организация почв. М.: Наука, 2006. С. 195–211.
  14. 14. Kabata-Pendias A. Trace elements in soils and plants. CRS Press. 2010. 548 p. doi: 10.1201/b10158.
  15. 15. Шабаев В. П., Волокитин М. П., Остроумов В. Е. Фракционный состав соединений меди в загрязненной металлом почве и его накопление в растениях при внесении ростстимулирующих ризосферных бактерий // Российская сельскохозяйственная наука. 2024. № 3. С. 62–65. doi: 10.31857/S2500262724030121.
  16. 16. Алексеев Ю. В. Качество растениеводческой продукции. Л.: Колос. 1978. 256 с.
  17. 17. Сидорова Т. М., Аллахвердян В. В, Асатурова А. М. Роль бактерий рода Pseudomonas и их метаболитов в биоконтроле фитопатогенных микроорганизмов // Агрохимия. 2023. № 5. C. 83–93. doi: 10.31857/S0002188123050071.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека