RAS Agricultural ScienceРоссийская сельскохозяйственная наука Russian Agricultural Sciences

  • ISSN (Print) 2500-2627
  • ISSN (Online) 3034-5820

Fractional composition of copper compounds in metal–contaminated soil and its accumulation in plants in application of growth promoting rhizosphere bacteria

PII
10.31857/S2500262724030121-1
DOI
10.31857/S2500262724030121
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
62-65
Abstract
Studies were carried out to investigate effect of application of growth-promoting rhizosphere bacteria of genus Pseudomonas in artificial contamination of agro-gray soil with copper in concentration above approximately permissible level on fractional composition of metal compounds in soil, weight of spring wheat plants and metal uptake by plants in pot experiment. To assess effect of bacteria on distribution of copper in soil fractions, inoculation with cultures P. fluorescens 20, P. fluorescens 21, and P. putida 23 was used. Wheat plants were grown up to booting stage in contamination with Cu(NO3)2·3H20 at rate of 300 mg Cu/kg of soil against background of NPK fertilization. Cu accumulation in fractions associated with organic matter, oxides and hydroxides of Fe and Mn and, to a lesser extent, with carbonates was established. Content of Cu in shoots and roots after combustion in mixture of HNO3 : HClO4 (2:1) and in soil fraction was determined by inductively coupled plasma emission-optical spectrometry. Bacteria rised plant resistance to high copper concentration and increased their weight by 13…24 %, reducing the phytotoxicity of metal. Positive effect of bacteria in copper contamination is due to increase in content of metal in roots (in 18…19 times relative to variant with copper contamination without bacteria application). Bacteria increased copper content mainly in specifically sorbed fraction associated with carbonates and in composition of ferruginous minerals, to lesser extent in organic fraction and decreased content of metal in residual fraction. Growth in copper uptake by plants from the soil by 19…30 % in application of bacteria corresponded to increase in its presence in soil in relatively mobile forms and decrease in the residual fraction.
Keywords
Pseudomonas яровая пшеница агросерая почва медь азотнокислая медь в растениях и почвенных фракциях
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus / A. Kumar, Tripti, O. Voropaeva, et al. // Chemosphere. 2021. 266. P. 128983. URL: https://www.sciencedirect.com/science/article/abs/pii/S0045653520331805?via%3Dihub (дата обращения: 14.02.2024). doi: 10.1016/ j.chemosphere.2020.128983.
  2. 2. Ojha A., Jaiswal S., Mishra S. Bioremediation techniques for heavy metal and metalloid removal from polluted lands: a review // Internatiional Journal of Science and Technology. 2022. Vol. 10. P. 10591–10612. doi: 10.1007/s13762-022-04502-3.
  3. 3. Dorjey S., Dolkar D., Sharma R. Plant growth promoting rhizobacteria Pseudomonas // International Journal of Current Microbiology and Applied Sciences. 2017. Vol. 7. P. 1335–1344. doi: 10.20546/ijcmas.2017.607.160.
  4. 4. Recent progress on emerging technologies for trace elements-contaminated soil remediation. Review. T. El. Rasafi, A. Haouas, A. Tallou, et al. // Chemosphere. 2023. Vol. 341. P. 140121. URL: https://pubmed.ncbi.nlm.nih.gov/37690564/ (дата обращения: 12.03.2024). doi: 10.1016/j.chemosphere.2023.140121.
  5. 5. Role of rhizobacteria in phytoremediation of heavy metals. Review Article / N. Nadeem, R. Asif, S. Ayyub, et al. // Biological and Clinical Sciences Research Journal. 2020. e035. URL: https://bcsrj.com/ojs/index.php/bcsrj/ article/view/35 (дата обращения: 21.11.2023). doi: 10.47264/bcsrj0101035.
  6. 6. Recent developments in microbe-plant-based bioremediation for tackling heavy metal-polluted soils: Review Article / L. Saha, J. Tiwari, K. Bauddh, et al. // Frontiers in Microbiology. 2021. Vol. 12. 723. URL: https://pubmed.ncbi.nlm.nih.gov/35002995/ (дата обращения: 14.02.2024). doi: 10.3389/fmicb.2021.731723.
  7. 7. Шабаев В. П., Бочарникова Е. А., Остроумов В. Е. Ремедиация загрязненной кадмием почвы при применении стимулирующих рост растений ризобактерий и природного цеолита // Почвоведение. 2020. № 6. С. 738–750. doi: 10.31857/S0032180X20060118.
  8. 8. Шабаев В. П., Остроумов В. Е. Почвенно-агрохимические аспекты ремедиации загрязненной никелем почвы при применении ростстимулирующих ризосферных бактерий // Почвоведение. 2023. № 2. С. 226–239. doi: 10.31857/S0032180X22600925.
  9. 9. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Сu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil / X. M. Ren, S. J. Guo, W. Tian, et al. // Frontiers in Microbiology. 2019. Vol. 10. 1–12. URL: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.01455/full (дата обращения: 12.12.2023). doi: 10.3389/fmicb.2019.01455.
  10. 10. Ладонин Д. В., Карпухин М. М. Фракционный состав соединений никеля, меди, цинка и свинца, загрязненных оксидами и растворимыми солями металлов // Почвоведение. 2011. № 8. С. 953–965.
  11. 11. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review / A. Ullah, S. Heng, M. F. H. Munis, et al. // Environmental and Experimental Botany. 2015. Vol. 117. P. 28–40. doi: 10.1016/j.envexpbot.2015.05.001.
  12. 12. Mishra J., Singh R., Arora N. K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Mini review article. Sec. Microbial Symbioses // Frontiers in Microbiology. 2017. Vol. 8. URL: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.01455/full (дата обращения: 19.03.2023). doi: 10.3389/fmicb.2017.01706.2019.01455/full.
  13. 13. Srivastava R., Singh A. Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture // International Journal of Agricultural Science and Research. 2017. Vol. 7. P. 505–510.
  14. 14. Antimicrobial properties of pyridine-2,6-ditiocarboxylic acid, metal chelator produced by Pseudomonas spp. / A. L. Sebat, A. J. Pasczynski, M. S. Cortese, et al. // Applied and Environmental Microbiology. 2001. Vol. 67. P. 3934–3942. doi: 10.1128/AEM.67.9.3934-3942.2001.
  15. 15. Ладонин Д. В. Формы соединений тяжелых металлов в техногенно-загрязненных почвах. М.: Издательство Московского университета, 2019. 312 c.
  16. 16. Макро- и микроэлементы в почвах и кормовых травах прифермерских полей Барнаульского Приобья / А. И. Сысо, М. А. Лебедева, С. А. Худяев и др. // Вестник Новосибирского государственного аграрного университета 2017. № 3. С. 54–61.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library