- Код статьи
- 10.31857/S2500262723010106-1
- DOI
- 10.31857/S2500262723010106
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 1
- Страницы
- 53-63
- Аннотация
- Методом ВЭЖХ анализа проведена сравнительная оценка изменения качественных и количественных показателей биохимического состава низкомолекулярных корневых экзометаболитов у трех разных генотипов гороха посевного (SGE, SGECDt и Софья) на раннем этапе вегетации под влиянием внесения в среду токсичных концентраций тяжелых металлов в виде хлоридов (кадмия и/или кобальта - 4 µM / 40 µM). Загрязнение питательного субстрата солями тяжелых металлов вызвало увеличение суммарного выхода сахаров и аминокислот у генотипов SGE и SGECDt. У сорта Софья этот эффект проявлялся только в отношении сахаров. Статистически значимой разницы в общем выходе органических кислот между тремя генотипами не наблюдали. Кластерный анализ и анализ главных компонент выделил уникальный мутант гороха SGECDt на фоне других генотипов при совместном введении в питательную среду солей обоих тяжелых металлов. Фрактальный анализ степени структурированности корневой экссудации на примере наибольшей по числу входящих в нее компонентов фракции аминокислот, показал, что значения коэффициентов корреляции демонстрируют возрастание суммарной биомассы растений при уменьшении индексов биосистемной детерминированности. Наименьший показатель индекса консолидации растительной системы в отсутствие стресса выявлен у сорта Софья. Под воздействием ТМ величина этого показателя никак не менялась, что может указывать на стагнацию роста растения и переход его к состоянию близкому к анабиозу. Об этом же можно судить исходя из данных ингибирования роста у генотипа и снижения выхода аминокислот. В присутствии ТМ по отдельности индекс детерминированности на горохе SGE индивидуально снижался, а у мутанта SGECdt, наоборот, повышался. Совместное действие металлов на SGECdt было мультипликативным. По этим показателям можно судить о том, что растение затрачивает больше сил для привлечения потенциальной полезной микрофлоры с целью образования эффективного симбиоза и успешного противодействия металл-индуцированному стрессу.
- Ключевые слова
- металлы корневые экзометаболиты гидросветокультура индекс биосистемной детерминированности
- Дата публикации
- 16.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 12
Библиография
- 1. Inderjit, Weston L.A. Root Exudates: An Overview. Root Ecology. Ecological Studies (Analysis and Synthesis). Berlin: Springer-Heidelberg, 2003. Vol. 168. P. 235-255. doi: 10.1007/978-3-662-09784-7_10
- 2. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass / N. Eisenhauer, A. Lanoue, T. Strecker, et al. // Sci. Rep. 2017. Vol. 7. URL: https://www.nature.com/articles/srep44641/ (дата обращения: 19.06.2022). doi: 10.1038/srep44641
- 3. Helal H.M., Sauerbeck D. Effect of plant roots on carbon metabolism of soil microbial biomass // Zeitschrift Für Pflanzenernährung Und Bodenkunde. 1986. Vol. 149. No 2. P. 181-188. doi: 10.1002/jpln.19861490205
- 4. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly / K. Zhalnina, K.B. Louie, Z. Hao, et al. // Nat. Microbiol. 2018. Vol. 3. P. 470-480. doi: 10.1038/s41564-018-0129-3
- 5. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli / A. Canarini, W. Wanek, A. Merchant, et al. // Front. Plant Sci. 2018. Vol. 10. No 157. URL: https://www.frontiersin.org/articles/10.3389/fpls.2019.00157/full/ (дата обращения: 19.06.2022). doi: 10.3389/fpls.2019.00157
- 6. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency / L.C. Carvalhais, P.G. Dennis, D. Fedoseyenko, et al. //j. Plant. Nutr. Soil Sci. 2011. Vol. 174. P. 3-11. doi: 10.1002/jpln.201000085
- 7. Gransee A. Effects of root exudates on nutrient availability in the rhizosphere. Plant Nutrition. Developments in Plant and Soil Sciences. Holland: Springer, 2001. P. 626-627. doi: 10.1007/0-306-47624-X_303
- 8. Nutrient availability in the rhizosphere: a review / T. Mimmo, Y. Pii, F. Valentinuzzi, et al. // Acta Hortic. 2018. Vol. 1217. P. 13-28. doi: 10.17660/ActaHortic.2018.1217.2
- 9. Effects of cadmium stress on growth, anatomy and hormone contents in Glycine max (L.) Merr. / M.V. Perez Chaca, A. Vigliocco, H. Reinoso, et al. // Acta Physiol Plant. 2014. Vol. 36. P. 2815-2826. doi: 10.1007/s11738-014-1656-z
- 10. Cadmium: toxicity and tolerance in plants / S.A. Hasan, Q. Fariduddin, B. Ali, et al. //j. Environ. Biol. 2009. Vol. 30. No 2. P. 165-174.
- 11. Ранжирование химических элементов по их экологической опасности для почвы / С.И. Колесников, К.Ш. Казеев, В.Ф. Вальков и др. // Доклады Российской Академии сельскохозяйственных наук. 2010. № 1. С. 27-29.
- 12. Елькина Г.Я. Реакция растений на полиэлементное загрязнение подзолистых почв тяжелыми металлами // Агрохимия. 2017. Т. 7. С. 78-85.
- 13. Combined toxicity and underlying mechanisms of a mixture of eight heavy metals / Q. Zhou, Y. Gu, X. Yue, et al. // Mol. Med. Rep. 2017. Vol. 15. No 2. P. 859-866. doi: 10.3892/mmr.2016.6089
- 14. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment / X. Wu, S.J. Cobbina, G. Mao, et al. // Environ. Sci. Pollut. Res. 2016. Vol. 23. P. 8244-8259. doi: 10.1007/s11356-016-6333-x
- 15. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars / M.T. Javed, M.S. Akram, K. Tanwir, et al. // Ecotoxicol Environ Saf. 2017. Vol. 141. P. 216-225. doi: 10.1016/j.ecoenv.2017.03.027
- 16. Seshadri B., Bolan N., Naidu R. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation //j. Soil Sci. Plant Nutr. 2015. Vol. 15. No 2. URL: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162015005000043&lng=en&nrm=iso&tlng=en/ (дата обращения: 19.06.2022). doi: 10.4067/s0718-95162015005000043
- 17. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings / L.P. Popova, L.T. Maslenkova, R.Y. Yordanova, et al. // Plant Physiol. Biochem. 2009. Vol. 47. P. 224-231. DOI: 10.1016/j.plaphy.2008.11.007
- 18. Sugiyama A., Yazaki K. Root exudates of legume plants and their involvement in interactions with soil microbes. Secretions and Exudates in Biological Systems, Signaling and Communication in Plants. Berlin: Springer-Verlag, 2012. P. 27-48. doi: 10.1007/978-3-642-23047-9_2.
- 19. A chemically induced new pea (Pisum sativum L.) mutant SGECDt with increased tolerance to and accumulation of cadmium / V.E. Tsyganov, A.A. Belimov, A.Y. Borisov, et al. // Ann. Bot. 2007. Vol. 99. P. 227-237. doi: 10.1093/aob/mcl261
- 20. A sterile hydroponic system for characterising root exudates from specific root types and whole-root systems of large crop plants / A. Kawasaki, S. Okada, C. Zhang, et al. // Plant Methods. 2018. Vol. 14. URL: https://plantmethods.biomedcentral.com/articles/10.1186/s13007-018-0380-x/ (дата обращения: 19.06.2022). doi: 10.1186/s13007-018-0380-x
- 21. Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques / E. Oburger, M. Dell‘mour, S. Hann, et al. // Environ. Exp. Bot. 2013. Vol. 87. P. 235-247. doi: 10.1016/j.envexpbot.2012.11.007
- 22. Sharakshane A. An easy estimate of the PFDD for a plant illuminated with white LEDs: 1000 lx = 15 μmol/s/m2 // BioRxiv. 2018. URL: https://www.biorxiv.org/content/10.1101/289280v1.full/ (дата обращения: 19.06.2022). doi: 10.1101/289280
- 23. Лаврентьева Г.В., Круглов С.В., Анисимов В.С. Динамика катионного состава почвенного раствора известкованной дерново-подзолистой почвы при загрязнении Co и Cd и изменении pH // Почвоведение. 2008. № 9. С. 1092-1100. doi: 10.1134/S106422930809007X
- 24. Кондратьев М.Н., Роньжина Е.С., Ларикова Ю.С. Влияние абиотических стрессов на метаболизм вторичных соединений в растениях // Известия КГТУ. 2018. Т.49. С. 203-219.
- 25. Quantitative changes in protein expression of cadmium-exposed poplar plants / P. Kieffer, J. Dommes, L. Hoffmann, et al. // Proteomics. 2008. Vol. 8. P. 2514-2530. doi: 10.1002/pmic.200701110
- 26. Effects of Cadmium Exposure on Growth and Metabolic Profile of Bermudagrass (Cynodon dactylon (L.) Pers.) / Y. Xie, L. Hu, Z. Du, et al. // PLoS One. 2014. Vol. 9. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115279/ (дата обращения: 19.06.2022). doi: 10.1371/journal.pone.0115279
- 27. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis / Y.Z. Shi, X.F. Zhu, J.X. Wan, et al. // JIPB. 2015. Vol. 57. P. 830-837. doi: 10.1111/jipb.12312
- 28. Wang S., Mulligan C.N. Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings // Environ Geochem Health. 2013. Vol. 35. No 1. P. 111-118. doi: 10.1007/s10653-012-9461-3
- 29. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead / Z. Niu, X. Li, L. Sun, et al. // Int. J. Phytoremediation. 2013. Vol. 15. No 7. P. 690-702. doi: 10.1080/15226514.2012.723066
- 30. The significance of methionine, histidine and tryptophan in plant responses and adaptation to cadmium stress / V. Zemanova, M. Pavlik, D. Pavlikova, et al. // Plant Soil Environ. 2014. Vol. 60. No 9. P. 426-432. doi: 10.17221/544/2014-PSE