- Код статьи
- S2500262725020082-1
- DOI
- 10.31857/S2500262725020082
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 2
- Страницы
- 41-49
- Аннотация
- Сельскохозяйственная птица служит источником устойчивых к антибиотикам и потенциально патогенных Escherichia coli, которые могут циркулировать на предприятиях и попадать в окружающую среду через органические отходы. Цель исследования - анализ профилей устойчивости к противомикробным препаратам, генов патогенности и филогрупп штаммов E. coli, циркулирующих в птицеводческих хозяйствах Пермского края. Изучены штаммы трех групп: от здоровых птиц (n=16), от кур с признаками колибактериоза (n=28) и из органических отходов (n=19). Методом ПЦР детектировали гены устойчивости к антимикробным препаратам и гены, кодирующие факторы патогенности. Среди штаммов первой группы мультирезистентные E. coli встречались в 18,8 % случаев, второй - в 75 %, третьей - в 73,7 % случаев. В ДНК E. coli обнаружено до 6 генов антибиотикорезистентности. Во всех группах чаще других встречался ген бета-лактамазы blaTEM. Более половины E. coli, полученных от больных кур, несли blaCTX-M. В органических отходах отмечали высокую долю E. coli, содержащих бета-лактамазу SHV-типа (63,2 %). Среди последних чаще детектировали ген системы эффлюкса tetA, также в этой группе более 20 % E. coli имели гены белков QnrB и QnrS, ответственные за плазмид--опосредованную резистентность к фторхинолонам. Большинство изолятов, полученных от здоровых птиц, относились к филогруппе E, от больных - к B1, выделенных из органических отходов - к C или E.Патогенные для птиц (АРЕC) культуры, в том числе клоны высокого риска, наиболее часто встречались в группе штаммов от больных птиц (75 %). При этом их обнаруживали и среди штаммов от здоровых кур (6,3 %), а также в органических отходах (63,2 %). Большинство проанализированных E. coli несли комбинации генов--маркеров как экстраинтестинальных, так и интестинальных E. coli, что указывает на их высокий зоонозный потенциал.
- Ключевые слова
- птицеводческие предприятия Escherichia coli патогенные для птиц E. coli (APEC) антибиотикорезистентность гены патогенности филогруппы
- Дата публикации
- 16.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 13
Библиография
- 1. Hedman H. D., Vasco K. A., Zhang L. A. Review of antimicrobial resistance in poultry farming within low-resource settings // Animals. 2020. Vol. 10. Article 1264. URL: https://www.mdpi.com/2076-2615/10/8/1264 (дата обращения: 01.04.2024). doi: 10.3390/ani10081264.
- 2. Влияние антибиотиков, использующихся в животноводстве, на распространение лекарственной устойчивости бактерий (обзор) / И. С. Сазыкин, Л. Е. Хмелевцова, Е. Ю. Селиверстова и др. // Прикладная биохимия и микробиология. 2021. Т. 57. № 1. С. 24-35.
- 3. Use of antibiotics in broiler production: Global impacts and alternatives / Y. Mehdi, M. P. Létourneau--Montminy, M. L. Gaucher, et al. // Animal nutrition. 2018. Vol. 4. No. 2. P. 170-178 URL: https://pubmed.ncbi.nlm.nih.gov/30140756/ (дата обращения: 01.04.2024). doi: 10.1016/j.aninu.2018.03.002.
- 4. Щепеткина С. В. Антибиотики в птицеводстве: запретить нельзя нормировать // Эффективное животноводство. 2019. № 4. С. 85-87.
- 5. Antibiotic resistance and virulence factors among Escherichia coli isolates from avian organic fertilizer / J. M. A. Agostinho, M. V. Cardozo, M. M. Borzi, et al. // Ciência Rural. 2020. Vol. 50. No. 2. Article e20180849. URL: https://www.scielo.br/j/cr/a/GdwZcDsCbBKhXhhQ4VLRhSz/?lang=en (дата обращения: 01.04.2024). doi: 10.1590/0103 8478cr20180849.
- 6. Prevalence of antibiotic resistant Escherichia coli strains isolated from farmed broilers and hens in Greece, based on phenotypic and molecular analyses / A. Xexaki, D. K. Papadopoulos, M. V. Alvanou, et al. // Sustainability. 2023. Vol. 15. Article 9421. URL: https://www.mdpi.com/2071-1050/15/12/9421 (дата обращения: 01.04.2024). doi.org/10.3390/su15129421.
- 7. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications / С. Manyi--Loh, S. Mamphweli, E. Meyer, et al. // Molecules. 2018. Vol. 23. No. 4. Article 795. URL: https://www.mdpi.com/1420-3049/23/4/795 (дата обращения: 01.04.2024). doi: 10.3390/molecules23040795.
- 8. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli / L. Bélanger, A. Garenaux, J. Harel, et al. // FEMS immunology and medical microbiology. 2011. Vol. 62. No. 1. P. 1-10. URL: https://academic.oup.com/femspd/article/62/1/1/519216?login=false (дата обращения: 14.04.2024). doi: 10.1111/j.1574 695X.2011.00797.x.
- 9. Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health / Z. R. Stromberg, J. R. Johnson, J. M. Fairbrother, et al. // PLoS One. 2017. Vol. 3. No. 12. Article e0180599. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180599 (дата обращения: 14.04.2024). doi: 10.1371/journal.pone.0180599.
- 10. Zoonotic approach to Shiga toxin--producing Escherichia coli: integrated analysis of virulence and antimicrobial resistance in ruminants and humans / B. Oporto, M. Ocejo, M. Alkorta, et al. // Epidemiology and infection. 2019. Vol. 147. Article e164. URL: https://pubmed.ncbi.nlm.nih.gov/31063106/ (дата обращения: 14.04.2024). doi: 10.1017/S0950268819000566.
- 11. Distribution of pathogenicity island (PAI) markers and phylogenetic groups in diarrheagenic and commensal Escherichia coli from young children / G. Naderi, F. Haghi, H. Zeighami, et al. // Gastroenterology and hepatology from bed to bench. 2016. Vol. 9. No. 4. P. 316-324.
- 12. Kaper B., Nataro J. P., Mobley H. L. Pathogenic Escherichia coli // Nature reviews. Microbiology. 2004. Vol. 2. No. 2. P. 123-140. URL: https://www.nature.com/articles/nrmicro818 (дата обращения: 14.04.2024). doi: 10.1038/nrmicro818.
- 13. Manges A. R., Johnson J. R., Food-borne origins of Escherichia coli causing extraintestinal infections // Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2012. Vol. 55. No. 5. P. 712-719. URL: https://academic.oup.com/cid/article--abstract/55/5/712/351325?redirectedFrom=fulltext (дата обращения: 14.04.2024). doi: 10.1093/cid/cis502.
- 14. Mellata M. Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends // Foodborne pathogens and disease. 2013. Vol. 10. No. 11. P. 916-932. URL: https://www.liebertpub.com/doi/10.1089/fpd.2013.1533 (дата обращения: 17.04.2024). doi: 10.1089/fpd.2013.1533.
- 15. Refining the definition of the avian pathogenic Escherichia coli (APEC) pathotype through inclusion of high-risk clonal groups / T. J. Johnson, E. A. Miller, C. Flores--Figueroa, et al. // Poultry Science. 2022. Vol. 101. No. 10. Article 102009. URL: https://www.sciencedirect.com/science/article/pii/S0032579122003005?via%3Dihub (дата обращения: 17.04.2024). doi: 10.1016/j.psj.2022.102009.
- 16. Diversity of hybrid- and hetero--pathogenic Escherichia coli and their potential implication in more severe diseases / A.C.M. Santos, F. F. Santos, R. M. Silva, et al. // Frontiers in cellular and infection microbiology. 2020. Vol. 10. Article 339. URL: https://www.frontiersin.org/journals/cellular-and-infection--microbiology/articles/10.3389/fcimb.2020.00339/full (дата обращения: 17.04.2024). doi: 10.3389/fcimb.2020.00339.
- 17. Intensive poultry farming: A review of the impact on the environment and human health / G. Gržinić, A. Piotrowicz--Cieślak, A. Klimkowicz--Pawlas, et al. // The Science of the total environment. 2023. Vol. 1. Article 160014. URL: https://www.sciencedirect.com/science/article/pii/S0048969722071145?via%3Dihub (дата обращения: 17.04.2024). doi: 10.1016/j.scitotenv.2022.160014.
- 18. Escherichia coli isolated from cases of colibacillosis in Russian poultry farms (Perm Krai): Sensitivity to antibiotics and bacteriocins / M. V. Kuznetsova, J. S. Gizatullina, L. Y. Nesterova, et al. // Microorganisms. 2020. Vol. 8. No. 5. Article 741. URL: https://www.mdpi.com/2076-2607/8/5/741 (дата обращения: 17.04.2024). doi: 10.3390/microorganisms8050741.
- 19. Bacteriocin--producing Escherichia coli isolated from the gastrointestinal tract of farm animals: prevalence, molecular characterization and potential for application / M. V. Kuznetsova, V. S. Mihailovskaya, N. B. Remezovskaya, et al. // Microorganisms. 2022. Vol. 10. Article 1558. URL: https://www.mdpi.com/2076-2607/10/8/1558 (дата обращения: 17.04.2024). doi: 10.3390/microorganisms10081558.
- 20. Multidrug--resistant, extensively drug-resistant and pandrug--resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance / A. P. Magiorakos, A. Srinivasan, R. B. Carey, et al. // Clin. Microbiol. Infect. 2012. Vol. 18. P. 268-281. doi: 10.1111/j.1469 0691.2011.03570.x.
- 21. Mihailovskaya V. S., Starčič Erjavec M., Kuznetsova M. V. Escherichia coli from healthy farm animals: antimicrobial resistance, resistance genes and mobile genetic elements // Acta Veterinaria Hungarica. 2024. Vol. 72. No. 4. P. 225-234. URL: https://akjournals.com/view/journals/004/72/4/article-p225.xml (дата обращения: 17.04.2024). doi: 10.1556/004.2024.01102.
- 22. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens / T. J. Johnson, Y. Wannemuehler, S. J. Johnson, et al. // Applied and environmental microbiology. 2008. Vol. 74. No. 22. P. 7043-7050. doi: 10.1128/AEM.01395 08.
- 23. The Clermont Escherichia coli phylo--typing method revisited: improvement of specificity and detection of new phylo--groups / O. Clermont, J. K. Christenson, E. Denamur, et al. // Environmental microbiology reports. 2013. Vol. 5. No. 1. P. 58-65. doi: 10.1111/1758 2229.12019.
- 24. Olaimat A. N., Holley R. A. Factors influencing the microbial safety of fresh produce: a review // Food Microbiology. 2012. Vol. 32. No. 1. P. 1-19. URL: https://www.sciencedirect.com/science/article/abs/pii/S0740002012000986?via%3Dihub (дата обращения: 17.04.2024). doi: 10.1016/j.fm.2012.04.016.
- 25. Distribution, numbers, and diversity of ESBL-producing E. coli in the poultry farm environment / H. Blaak, A. H. van Hoek, R. A. Hamidjaja, et al. // PLoS One. 2015. Vol. 10. No. 8. Article e0135402. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135402 (дата обращения: 20.04.2024). doi: 10.1371/journal.pone.0135402.
- 26. Antimicrobial resistance of commensal Escherichia coli from food-producing animals in Russia / D. A. Makarov, O. E. Ivanova, S. Y. Karabanov, et al. // Veterinary world. 2020. Vol. 13. No. 10. P. 2053-2061. doi: 10.14202/vetworld.2020.2053 2061.
- 27. Szmolka A., Nagy B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health, Frontiers in microbiology, 2013, vol. 4, Article 258. URL: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2013.00258/full (дата обращения: 20.04.2024). doi: 10.3389/fmicb.2013.00258.
- 28. Prevalence and molecular characterization of extended--spectrum β-lactamases and AmpC β-lactamase--producing Enterobacteriaceae among human, cattle, and poultry / M. A. Nossair, F. A. Abd El Baqy, M. S. Y. Rizk, et al. // Pathogens. 2022. Vol. 11. No. 8. Article 852. URL: https://www.mdpi.com/2076-0817/11/8/852 (дата обращения: 20.04.2024). doi: 10.3390/pathogens11080852.
- 29. Davin--Regli A., Pages J.-M., Ferrand A. Clinical status of efflux resistance mechanisms in gram-negative bacteria // Antibiotics. 2021. Vol. 10. Article 1117. URL: https://www.mdpi.com/2079-6382/10/9/1117 (дата обращения: 20.04.2024). doi.org/10.3390/antibiotics10091117.
- 30. Plasmid--mediated quinolone resistance: a multifaceted threat / J. Strahilevitz, G. A. Jacoby, D. C. Hooper, et al. // Clinical microbiology reviews. 2009. Vol. 22. No. 4. P. 664-689. doi: 10.1128/CMR.00016 09.
- 31. Характеристика вирулентных штаммов Escherichia coli, выделенных от пациентов с урологической инфекцией / П. В. Слукин, Е. И. Асташкин, Е. М. Асланян и др. // Журнал микробиологии, эпидемиологии и иммунобиологии. 2021. Т. 98. № 6. С. 671-684. doi: 10.36233/0372 9311 134.
- 32. Molecular screening of virulence genes in extraintestinal pathogenic Escherichia coli isolated from human blood culture in Brazil / V. L. Koga, G. Tomazetto, P. S. Cyoia, et al. // BioMed Research International. 2014. Article 465054. URL: https://onlinelibrary.wiley.com/doi/10.1155/2014/465054 (дата обращения: 20.04.2024). doi: 10.1155/2014/465054.
- 33. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease / K. A. Tivendale, C. M. Logue, S. Kariyawasam, et al. // Infection and Immunity. 2010. Vol. 78. P. 3412-3419. doi: 10.1128/IAI.00347 10.
- 34. Genome evolution and the emergence of pathogenicity in avian Escherichia coli / L. Mageiros, G. Méric, S. C. Bayliss, et al. // Nature Communications. 2021. Vol. 12. No. 1. Article 765. URL: https://www.nature.com/articles/s41467-021-20988 w (дата обращения: 20.04.2024). doi: 10.1038/s4146702120988w.
- 35. Phylogenetic group and virulence profile classification in Escherichia coli from distinct isolation sources in Mexico / J. R. Aguirre--Sánchez, J. B. Valdez--Torres, N. C. Del Campo, et al. // Infection, genetics and evolution. 2022. Vol. 106. Article 105380. URL: https://www.sciencedirect.com/science/article/pii/S1567134822001770?via%3Dihub (дата обращения: 20.04.2024). doi: 10.1016/j.meegid.2022.105380.
- 36. Comparative characteristics and pathogenic potential of Escherichia coli isolates originating from poultry farms, retail meat, and human urinary tract infection / J. Sarowska, T. Olszak, A. Jama--Kmiecik, et al. // Life. 2022. Vol. 12. No. 6. Article 845. URL: https://www.mdpi.com/2075-1729/12/6/845 (дата обращения: 20.04.2024). doi: 10.3390/life12060845.
- 37. An integrated perspective on virulence--associated genes (VAGs), antimicrobial resistance (AMR), and phylogenetic clusters of pathogenic and non-pathogenic avian Escherichia coli / S. E. Rezatofighi, A. Najafifar, M. Askari Badouei, et al. // Frontiers Veterinary Science. 2021. Vol. 24. No. 8. Article 758124. URL: https://www.frontiersin.org/journals/veterinary--science/articles/10.3389/fvets.2021.758124/full (дата обращения: 20.04.2024). doi: 10.3389/fvets.2021.758124.