Исследования проводили с целью создания интерпретируемой модели машинного обучения (объяснимый искусственный интеллект) для прогнозирования урожайности яровой пшеницы. Использовали данные длительного полевого опыта (2001-2024 гг.), проведенного в лесостепи Алтайского Приобья. Схема эксперимента предусматривала изучение роли предшественников, приемов основной обработки выщелоченного чернозема, а также уровней применения минеральных удобрений и химических средств защиты растений в формировании урожайности яровой мягкой пшеницы. Для создания модели использовали экстремальный градиентный бустинг (XGBoost), а для ее интерпретации - аддитивные объяснения Шепли (SHAP), что позволило оценить вклад каждого признака. Построенная модель XGBoost продемонстрировала высокую точность прогнозирования (R²=0,95, MAE=0,13 т/га, RMSE=0,17 т/га), а интеграция с SHAP-анализом выявила наиболее значимые признаки (5…6 из 18), определяющие урожайность в лесостепи Алтайского Приобья. Наибольший в эксперименте вклад в высокую прогнозную урожайность вносили достаточное увлажнение за сельскохозяйственный год (596,5 мм; 1,19 т/га), использование пара в качестве предшественника (0,58 т/га) и применение азотно--фосфорных удобрений (0,21 т/га). Низкая прогнозная урожайность обусловлена недостатком увлажнения в течение сельскохозяйственного года (317 мм; -0,77 т/га) и с мая по октябрь (246 мм; -0,24 т/га), а также высокими значениями суммы положительных температур (2527,5 °C; -0,13 т/га), низким количеством осадков в период вегетации пшеницы (175 мм; -0,10 т/га) и отсутствием применения средств защиты растений (-0,10 т/га). Разработанная модель расширяет возможности машинного обучения, позволяя получать более надежные и информативные результаты.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation